
Resample and combine: an approach to improving
uncertainty representation in evidential pattern classification

J. Franc�ois a,b, Y. Grandvalet a,*, T. Denœux a, J.-M. Roger b
a Heudiasyc, UMR CNRS 6599, Universit�ee de Technologie de Compi�eegne, Centre de Recherches de Royallieu, F-60205 Compi�eegne Cedex, France

b Cemagref, GIQUAL Research Unit, 361 rue Jean-Franc�ois Breton, F-34033 Montpellier, France

Received 12 November 2001; received in revised form 17 June 2002; accepted 8 November 2002

Abstract

Uncertainty representation is a major issue in pattern recognition. In many applications, the outputs of a classifier do not lead

directly to a final decision, but are used in combination with other systems, or as input to an interactive decision process. In such

contexts, it may be advantageous to resort to rich and flexible formalisms for representing and manipulating uncertain information.

This paper addresses the issue of uncertainty representation in pattern classification, in the framework of the Dempster–Shafer

theory of evidence. It is shown that the quality and reliability of the outputs of a classifier may be improved using a variant of

bagging, a resample-and-combine approach introduced by Breiman in a conventional statistical context. This technique is explained

and studied experimentally on simulated data and on a character recognition application. In particular, results show that bagging

improves classification accuracy and limits the influence of outliers and ambiguous training patterns.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Supervised pattern recognition, or classification, is
concerned with the design of decision rules whereby

entities, described by feature vectors, are assigned to

predefined categories. Whereas classification systems are

sometimes used directly to trigger specific actions, it is

often the case that the outputs from a classifier are used

in combination with other sources of information, or are

presented to a human decision maker via an interactive

decision-aid system. Such situations occur, for example,
in medical or technical diagnosis, weather forecasting,

financial decision making, and even in certain character

recognition applications in which ambiguous patterns

are rejected for further interactive processing. In such

contexts, it is particularly important to provide not only

an indication of the most plausible class, but also a

faithful description of the plausibility (taken here in a

broad sense) of various hypotheses regarding the class of

the pattern under consideration. Uncertainty represen-

tation and management thus play an important role in
pattern recognition.

In the last 30 years, the issue of uncertainty repre-

sentation has received considerable attention in the

computer science and electrical engineering communi-

ties. New theoretical frameworks such as possibility

theory [27] and evidence theory [17] have been proposed

as alternatives to Bayesian probability theory to de-

scribe, manipulate, and reason with partial knowledge
and unreliable information. In particular, the so-called

Dempster–Shafer (D–S) theory of evidence, first pro-

posed by Shafer [17] and further elaborated by many

authors (see, e.g., reviews in Refs. [18,21,23]) has been

shown to constitute a rich and flexible framework, in

which the concepts of a probability and possibility

measures are recovered as special cases of the more

general concept of belief function. This theory has been
successfully applied in many areas such as diagnosis [22],

sensor fusion [2,12] and pattern classification [4,8,16,26].

When applying D–S theory to classification tasks, the

construction of belief functions from observation data is

a crucial step. Typically, a training set of patterns fxigNi¼1
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with known classification is given, and one wishes to
quantify one�s beliefs concerning the category of a new
pattern x submitted to the system. A method for infer-

ring a belief function in this context is the evidential K-
NN rule previously introduced by one of the authors

[4,15,28]. In this method, each training example xi is
treated as an item of evidence regarding the unknown

class of the pattern x under consideration. The strength
of this evidence is assumed to be a decreasing function
of the distance between x and xi. A belief function is

constructed by pooling the evidence from the K-nearest
neighbors of x in the training set.
In this paper, it is proposed to improve this method

using a variant of a technique proposed by Breiman [3]

in a conventional statistical context to improve the sta-

bility of classification rules. In this technique, known as

‘‘bagging’’, B ‘‘bootstrap’’ samples are generated by
drawing instances with replacement from the original

data set. Each of these samples is then used separately as

a training set, resulting in the construction of B distinct
classifiers which are then combined using the majority

rule. In the present paper, a modification of this tech-

nique is proposed, in which each bootstrap sample yields

a belief function, and the B belief functions are com-

bined in an appropriate way before a decision is made.
This method is shown experimentally to provide a more

‘‘realistic’’ description of the uncertainty pertaining to

the classification task, leading to improved classification

performances.

The paper is organized as follows. After an intro-

duction to the main concepts of evidence theory and

their use in pattern recognition (Section 2), the central

idea of this paper, i.e., the adaption of the bagging ap-
proach to evidential classifiers, is explained in Section 3.

The rest of the paper is then devoted to the presentation

and discussion of experimental results obtained in an

artificial learning task (Sections 4–6) and in an optical

character recognition application (Section 7). In partic-

ular, the latter experiment investigates the effect of

bagging in an information fusion context, the classifier

outputs being combined with a rule expressing prior
knowledge. Finally, Section 8 concludes the paper and

presents directions for further research.

2. Background

2.1. Theory of belief functions

Only the main concepts of the D–S theory of belief

functions will be recalled here. The reader is referred

to Shafer�s book [17] for a detailed exposition of the
mathematical background, and to more recent papers

such as, e.g., Refs. [23–25] for up-to-date presentations
of the latest developments in both the theoretical aspects

and practical applications of belief functions. Note that

debates on the relevance of the D–S model, and par-
ticularly on its relationship with probability theory have

sometimes been obscured by misunderstandings re-

garding the nature of belief functions at the semantic

level [20,21]. Although our approach is not tied to a

particular interpretation of belief functions, we shall

adopt the non-probabilistic view of Smets� transferable
belief model (TBM), which constitutes a coherent and

justified approach [23,25].
In short, the main assumptions underlying the TBM

are that (1) degrees of belief are quantified by numbers

between 0 and 1; (2) there exists a two-level structure

composed of a credal level where beliefs are entertained,

and a pignistic level where decisions are made; (3) beliefs

at the credal level are quantified by belief functions,

while decisions at the pignistic level are based on

probability functions; (4) when a decision has to be
made, beliefs are transformed into probabilities using

the so-called pignistic transformation.

2.1.1. The credal level

Let X ¼ fx1; . . . ;xMg be a finite possibility space

containing all the possible answers to a certain question

(the truth lies necessarily somewhere in X). In the type of
applications envisaged here, X is the set of possible
classes for an object with unknown class membership. It

is assumed that any item of evidence can be represented

by a belief structure, or basic belief assignment, defined

as a function m from 2X (the power set of X) to the ½0; 1�
interval, verifying

X
A�X

mðAÞ ¼ 1 ð1Þ

and mð;Þ ¼ 0. The value of mðAÞ can be interpreted as
the ‘‘mass’’ of belief that is given to A and that cannot be
given to any other subset without further information.

In particular, mðXÞ ¼ 1 represents total ignorance (m is

then called the vacuous belief structure), and mðfx1;
x2gÞ ¼ 1 means complete certainty that either hypoth-

esis 1 or hypothesis 2 is true (with no evidence in favor
of any one of them individually).

The information conveyed by a new source of belief

can be incorporated to the current belief structure by use

of the Dempster�s rule of combination [19]. This can be
done only if the sources of belief are independent and

non-totally contradictory (that is, two belief structures

m1 and m2 can be combined if there is A � X and B � X
with A \ B 6¼ ;, such that m1ðAÞ > 0 and m2ðBÞ > 0).
This combination creates a new belief structure m on X
that represents the new state of knowledge, defined, for

each C � 2X n ;, as

mðCÞ ¼ 1

1
 j

X
A\B¼C

m1ðAÞm2ðBÞ; ð2Þ
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j ¼
X
A\B¼;

m1ðAÞm2ðBÞ: ð3Þ

The normalizing factor j is interpreted as a degree of
conflict between the two sources: when j ¼ 1, the con-

flict is total and the sources cannot be combined.

2.1.2. The pignistic level

Given a belief structure, different criteria can be used

to choose one hypothesis, such as the maximum of

plausibility [2], or the minimization of some given risk.

We will use here the pignistic risk minimization as de-

fined and justified by Smets [25] on an axiomatic basis.

Let PBet be the so-called pignistic probability distri-
bution, defined by uniformly distributing the mass of

belief given to each subset of X among its elements:

PBetðxÞ ¼
X

fA�Xjx2Ag

mðAÞ
jAj 8x 2 X; ð4Þ

where jAj is the number of elements in A.
In the TBM, the pignistic probability function is used

for decision making according to the Bayes decision
theory. Let A denote a set of actions, and kðajxÞ the
loss incurred if action a 2 A is selected, x 2 X being the
true state of nature. Then, the expected cost (or risk)

when choosing action a, relative to the pignistic distri-
bution, is

RBetðaÞ ¼
X
x2X

kðajxÞPBetðxÞ; ð5Þ

¼
X
A�X

mðAÞ
jAj

X
x2A

kðajxÞ: ð6Þ

The Bayes decision rule then recommends the action a
with the lowest expected cost RBetðaÞ.

2.2. Application to pattern classification

In the first applications of D–S theory to pattern

recognition problem, the outputs from conventional,

probabilistic classifiers were converted into belief struc-

tures for more effective combination [13,16]. This was
usually done through the use of classification error rates

[26], distances to class centers [13], or class-conditional

density estimates [2].

More recently, Denœux proposed an evidence-theoretic

pattern recognition scheme, named the evidential K-NN
rule [4,8], although it may be more accurately described

as an evidential kernel classifier. It takes fully advantage

of the extensive representation of beliefs, without re-
sorting to any intermediate probabilistic representation.

The outline of this approach is summarized below.

Let x be the sample to be classified, X ¼ fx1; . . . ;xMg
the set of classes, andL ¼ fðxi; yiÞgNi¼1 the learning set of
known patterns, where yi 2 X is the class of pattern xi.
Each example xi is considered as an item of evidence

about the class of x. If yi ¼ xq, this evidence induces a

belief structure mi with focal elements fxqg and X:

miðAÞ ¼
a expð
cqkxi 
 xk2Þ if A ¼ fxqg;
1
 a expð
cqkxi 
 xk2Þ if A ¼ X;
0 otherwise;

8<
: ð7Þ

where kxi 
 xk is the Euclidean distance between xi and
x, and a and cq ðq ¼ 1; . . . ;MÞ are positive parameters.
This basic belief assignment is thus defined by a ra-

dially symmetric function centered on xi. Each para-
meter cq 2 Rþ adjusts the influence of the patterns of

class q according to their distance to x, while the cer-
tainty expressed by training patterns is limited by pa-

rameter a 2 ½0; 1� setting the minimum belief mass given

to X. These coefficients can be determined from data by
a fully automatic procedure [28].

The belief induced by the training examples far from

x is almost vacuous (knowing the label of examples far
away from the query point is not informative). Hence,

for computational reasons, only the belief structures

provided by the K-nearest neighbors of x are evaluated.
As they are independent from each other, these K belief

structures are simply combined into a single structure by
means of Dempster�s rule (2,3). This structure represents
the available information about the class of x. It is used
to compute pignistic probabilities PBetðxjjxÞ, from which

class assignment can be performed, using the approach

described in Section 2.1 [5]. In this context, the set of

actions may be defined asA ¼ fa0; a1; . . . ; aMg, where ai

for i ¼ 1; . . . ;M is the decision to classify x in class xi,

and a0 denotes rejection. In this paper, the loss is as-
sumed to be 1 in case of a wrong classification and 0 for

correct classification. The rejection loss is assumed to be

constant, and equal to some value k0 2 ½0; 1�. We thus
have

kðaijxjÞ ¼ 1
 dij 8i; j 2 f1; . . . ;Mg; ð8Þ
kða0jxjÞ ¼ k0 8j 2 f1; . . . ;Mg; ð9Þ

where dij is the Kronecker symbol (dij ¼ 1 if i ¼ j, and 0
otherwise).

With these costs, the risks are defined, for each ac-
tion, as follows:

RBetðaijxÞ ¼ 1
 PBetðxijxÞ; i ¼ 1; . . . ;M ; ð10Þ
RBetða0jxÞ ¼ k0: ð11Þ

Each pattern is thus assigned to the class with highest

pignistic probability, provided this probability is greater

that 1
 k0. Otherwise, it is rejected. Consequently, para-
meter k0 allows to control the rejection rate of the

classifier.
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3. Sampling, learning and uncertainty

3.1. Problem

The basic belief assignment defined by Eq. (7) handles

the uncertainty that stems from the possibly novel char-

acteristics of the query sample. However, additional cau-

ses of uncertainty exist. First, the known instances xi are
usually not ‘‘prototypical’’ patterns, such as measurement
vectors obtained from some careful experimental design.

They are records of past solved cases, which are supposed

to be representative of future unsolved cases. In proba-

bilistic terms, they may be considered as randomly sam-

pled from the distribution of future cases. This random

sampling is responsible for some uncertainty in the global

belief assignment. This ‘‘sampling’’ uncertainty cannot be

represented by a basic belief assignment conditioned on a
single realization of the training set.

Additionally, when the parameters of the basic belief

assignment are tuned by minimizing some performance

criterion on the training set, the learned parameters are

also random variables, whose variability is responsible

for another part of uncertainty. This is why we propose

here the use of bagging, introduced in the probabilistic

framework by Breiman to limit the effects of sampling
on a learned decision rule.

3.2. Bagging decision rules

Bagging is a procedure for improving a classification

procedure using a resample-and-combine technique [3].

Breiman argues that its main effect is to decrease the
variance of the estimator, and advocates its use for un-

stable classification methods, i.e. methods which are

sensitive to perturbations of the training set.

‘‘Bagging’’ is an acronym for ‘‘bootstrap aggre-

gating’’. From the original decision rule, the bagged

estimator is produced by aggregating, using a majority

vote, several replicates of the rule, trained on bootstrap

resamples of the learning set. A bootstrap sample [11] is
created by drawing with replacement N examples from

the learning set L ¼ fðxi; yiÞgNi¼1. It has thus the same
size as the original sample but may contain replicates of

some given examples, while other ones are not repre-

sented. The drawing with replacement in L simulates

the original sampling from the distribution that gener-

ated L. Several empirical evaluations showed that the
method almost systematically improves the original
predictor [3,9,10]. In situations with substantial noise, its

performance is also comparable to other ensemble

methods such as boosting or randomization [9].

3.3. Bagging in the transferable belief model

In pattern classification, bagging is usually applied to

the decisions. In this paper, however, we propose to use

it upstream, at the credal level. The main goal is to
better take into account the uncertainty attached to the

finite training set, in order to allow steadier decisions

and, consequently, to improve the result of further

combinations when new sources are available.

Practically, B bootstrap learning setsLb ðb ¼ 1; . . . ;BÞ
are obtained by drawing with replacement N examples

from the original learning set L. Here, the bootstrap is
balanced, which means that each sample ðxi; yiÞ is globally
drawn B times over the B resamples. Then, for a given

unknown sample x, each training setLb produces a belief

structure mb through a given evidential K-NN classifier.

These are finally aggregated into the average structure mB,

defined as

8A � X; mBðAÞ ¼
1

B

XB
b¼1

mbðAÞ: ð12Þ

The usual bagging combines votes by the majority rule

on the B decision rules. Since we are interested in un-
certainty representation, aggregation takes place here at

the credal level, using the average operator. Note that the

Dempster�s rule of combination cannot be used here,
because the belief sources are obviously not independent.

Although other operators could be used (this is a
subject of on-going research), averaging seems to be a

good candidate as it is idempotent, commutative and

linear: first, getting B times the same structure should

lead to this same structure after aggregation (idempo-

tency), second, the resulting structure should be inde-

pendent from the aggregation order (commutativity),

and third, the linear relationship between credal and

probabilistic levels, introduced by Smets and Kennes
[25] in the decision process, also supports linear aggre-

gation (linearity).

4. Experimental settings

4.1. The problem

In a first attempt to investigate the benefits of bag-

ging, we will focus on an artificial learning task. For

easy problems, with well-separated classes and large

training sets, many different algorithms usually yield

similar results. A learning task of interest should
therefore involve overlapping class distributions and a

small learning set. Additionally, it should contain out-

liers as these are frequently encountered in real data sets.

Finally, we chose a bidimensional problem so as to

easily represent and interpret the results.

In the experiments reported in the sequel, we con-

sidered three bidimensional Gaussian distributions with

common covariance matrix R ¼ 2:25I and mean vectors
ð0; 0Þ, ð3; 0Þ and ð0; 5Þ. Each training set L was con-

structed by drawing 15 points from each distribution.
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Additionally, to simulate the contamination of the
training set by outliers, six points with randomly se-

lected class labels were drawn from a uniform distribu-

tion on ½
5; 9� � ½
3; 8�.
To exhibit general trends, 15 training sets were gen-

erated from the same distribution. Fig. 1 shows an ex-

ample of such a generated set.

4.2. Evaluation

For each training set, the decision rule was evaluated

on a single independent test set T generated from the

same distribution asL with NT ¼ 2000� 3þ 800 items:
2000 patterns in each class and 800 ‘‘outliers’’. The mean

classification cost C was estimated by the average of the

classification costs on the NT test points of T:

C ¼ 1

NT

X
ðx;yÞ2T

kðDðxÞjyÞ; ð13Þ

where DðxÞ 2 A ¼ fa0; . . . ; aMg denotes the decision

made by the classifier for pattern x. The costs were de-
fined according to Eqs. (8) and (9): zero for correct
classification, one for wrong classification and k0 for
rejection.

The classification error rate E was estimated by the

proportion of bad predictions (rejection is not an error)

and the rejection rate R was defined as the proportion of

rejected items. We thus have the following relation be-

tween C, E and R:

C ¼ Eþ k0R: ð14Þ
The mean classification cost was also computed for
the Bayes classifier, whose optimal solution provides a

baseline to compare results with and without bagging.

Its performances also characterize the intrinsic difficulty

of the task.

4.3. Implementation

The evidential K-NN rule described in Section 2.2

requires the setting of M þ 2 parameters: K (number of

neighbors), a and c ¼ ðc1; . . . ; cMÞ. The bagged estimate
requires an additional parameter B for the number of

bootstrap resamples of the learning set.

In the evidential K-NN rule, the influence of a

neighboring vector decreases with its distance to the
query point. Setting K ¼ 8 was found to result in near-

asymptotic behavior while limiting the computational

expense. The influence of training patterns depends on

parameters a and c (see Eq. (7)). As the influence of a on
the classification is low, it was set to the default 0.95

value [4]. Regarding c, we will proceed here in two steps.
First, all cq are fixed (Section 5); they are set to the same
value (0.5) since the three classes have the same shape
and the same number of items. Then, different learning

strategies are tested in Section 6.

Finally, the average structure mB estimates the ex-

pected structure over training sets. The expectation over

training samples is ideally estimated by the expectation

over bootstrap samples. Hence, the number B of boot-
strap samples should tend towards infinity. In fact, the

effect of bagging is quite visible for values as low as
B ¼ 10. We used B ¼ 50, as the small improvement

achieved by higher values is not worth the computation

cost. Note that Breiman recommends values around 25.

5. Results without learning

In this section, the results with and without bagging,

for the problem described in Section 4.1, will be com-
pared from three successive viewpoints: (1) the quality

of the decisions, (2) the closeness of the pignistic prob-

abilities to the class posterior probabilities, and (3) the

ability of the output belief structures to adequately

represent the classification uncertainty.

5.1. Decision level

Fig. 2 shows mean classification costs vs. rejection

costs for the 15 experiments. The horizontal segments

in boxplots represent the lower quartile, median, and

upper quartile over the 15 simulations. Minimal and
maximal values are indicated by the whiskers, and the

plotted curve itself is the average over experiments.

Bagging clearly improves classification for low classifi-

cation costs, which correspond to higher rejection rates

(the difference in the average mean classification cost is

significant to the 5% level for 0 < k06 0:5 according to
the exact Wilcoxon signed ranks test for matched sam-

ples). Its cost is half-way between the original algorithm
and the Bayes classifier. However, this benefit van-

ishes for high values of k0 (low rejection rates). The

–4 –2 0 2 4 6

–2

0

2

4

6

Fig. 1. Example of a generated learning set. The intersections of dotted

lines indicate the class means.
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improvement due to bagging is thus linked to its higher

capacity to reject truly ambiguous patterns. In fact, the

class with maximum pignistic probability PBetðxjjxÞ is
generally not modified by the bagging procedure, but

the pignistic probabilities values may be significantly

modified so that rejection is more frequent.

In agreement with what intuition suggests, taking

into account the uncertainty due to the finite size of the
training sample hardly modifies the rank of the highest

pignistic probability. Its value is however properly

lowered, which is interpreted as a more uncertain out-

come. Bagging is thus beneficial when the values at-

tached to belief assignments are of interest. Besides

rejection, all applications where a measure of uncer-

tainty should be attached to the decision are concerned.

Remark: In our method, each bootstrap resample of the

training set generates a belief structure for each x. These
B structures are first aggregated by averaging, and the
decision is then based on this average belief structure.

The faithful transposition of the original proposition

of Breiman would have been to perform a majority

vote between the decisions provided by the B classifi-

ers. Experimental results (not shown here) show that
this strategy is a poor choice in the TBM framework.

This suggests that the evidential K-NN procedure al-

ready provides stable decision rules, a finding in agree-

ment with Breiman�s results concerning the standard
K-NN [3].

5.2. Pignistic level

While it may be possible to display the effect of

bagging at the credal level, there is no satisfactory cri-

teria for measuring the relevance of a belief structure.
We thus resort to the study of pignistic probabilities

which give more information on beliefs than the deci-

sions themselves.

The results regarding mean classification cost suggest

that, with bagging, the pignistic probabilities PBetð�jxÞ
should be closer to the posterior probabilities pð�jxÞ. The
latter can be computed exactly from the densities

f ðxjxjÞ ¼
15

17
fNðx; lj;RÞ þ

2

17
fUðxÞ; ð15Þ

where fNð�; l;RÞ is the Gaussian density of mean l and
covariance matrix R and fUð�Þ is the uniform distribu-

tion on ½
5; 9� � ½
3; 8� (see Section 4.1). Knowing that
all priors pðxjÞ are equal to 1/3, the posterior proba-
bilities are directly obtained by Bayes� rule.
The overall mean quadratic error on posterior class

probabilities is 40% lower when bagging is applied. As

our two-dimensional example allows us to visualize

probability surfaces, it is possible to characterize situa-

tions where bagging incurs significant modifications of

probabilities. An example is given in Fig. 3, which shows

that bagging performs a data-dependent smoothing,

highly effective in regions where data is scarce, and

otherwise less marked. Hence, the main differences occur
at class boundaries and for outliers (one is situated at

the left-hand side of the graph).

In terms of estimation errors, the result is beneficial,

as displayed in Fig. 4. Bagging thus yields a better

representation of uncertainties, stemming either from

ambiguity (where classes overlap) or from lack of

information (in regions of low density of training

patterns).

5.3. Credal level

At each point x, the aggregated belief structure is the
average of 50 belief structures. The distribution of these
structures indicates the relevance of the average opera-

tor for aggregating beliefs regarding uncertainty repre-

sentation.

At the credal level, the effect of bagging is again vis-

ible in the regions where outliers were present in the

learning set or where classes overlap. Fig. 5 shows the

mass distributions of the B structures associated to two
test examples. These are given to each of the four hy-
potheses x1, x2, x3 and to the reference set X.
In the low-probability density regions, the masses on

the three hypotheses xj are small because the neighbors

are far from x. Much of the mass then goes to X, which
is always fully compatible with any more precise hy-

pothesis; the remaining mass is usually given to the

nearest neighbor class. In the absence of conflict in the

neighborhood, the average structure is a good summary
of the distribution, providing a good representation of

uncertainty.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ
0

C

Fig. 2. Mean classification cost C as a function of rejection cost k0 for
original (thin line) and bagged (bold line) methods (c fixed). The dotted
line corresponds to the minimum cost.
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In ambiguous regions, some belief structures that

were produced on bootstrapped training sets assigned

most of the mass to one hypothesis or another (in our

example x1 or x3) because of high heterogeneity in the

neighborhood. The resulting mass distributions mðfx1gÞ
and mðfx3gÞ are bimodal. Bagging through averaging

distributes the belief mass between the classes in conflict,

and provides a good compromise at the pignistic level.

However, the average is not a faithful summary of

multimodal distributions. As a consequence, no trace of

the individual conflicts remains at the aggregated credal

level. Possible answers to this problem will be mentioned

in Section 8.

6. Results with learning

In the previous section, the parameters a and c of the
basic belief assignments were set to arbitrary values. The

effect of bagging regarding uncertainty due to the finite

sample size was thus isolated. This section depicts the
effect of bagging regarding the uncertainty pertaining to

the learning of parameters. In the following simulations,

a was fixed at 0.95 as it was shown to have only marginal
influence on the classification results [4,28].

6.1. Influence of c

As explained in Section 2.2, the influence regions of

training patterns are controlled by c (Eq. (7)). Fig. 6
shows the mean classification cost as a function of c for
the original classifier and its bagged version. Note that

these curves, computed on the test set, could not have

been drawn in a real problem. Our goal here is to un-

derstand why bagging works, not to propose a method

for choosing c.
The bagged K-NN mean classification cost is always

lower than that of the original algorithm, for all values
of c and all rejection costs. Thus, the results presented in
the previous sections are representative of what would

be obtained for any value of c. The comparison of the
two plots in Fig. 6 also shows that the differences be-

tween the two methods are larger for small rejection

costs, regardless of c.
Looking now at both plots in Fig. 6, we see that

bagging is more effective in improving the original
method for small values of c, i.e., when all neighbors
have almost the same influence, regardless of their
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distance to the query sample. In this case, the resulting

belief is too confident, and bagging neatly corrects it.

In comparing the two graphs, it may be noted that,
for the bagged algorithm, the optimal c value is identical
for both rejection costs, while it depends on k0 for the
standard algorithm. Indeed, these two values should

ideally not interact, as beliefs should not be affected by

the consequences of actions. These consequences should

only be taken into account in the decision process.

Finally, the lower variability of C provides a steadier

optimal c value and a lower sensitivity to errors in c, in
terms of misclassification cost. This stability results in an

improvement of c estimation methods, as shown in the
sequel.

6.2. Estimation of c

Although the fine tuning of c is less important with
bagging, we need a practical way of estimating a rele-

vant value. Here, we use the learning scheme of Zouhal

and Denœux [28], which minimizes the leave-one-out

cross-validation estimate of the mean quadratic error on

posterior probabilities.

Fig. 7 shows the mean classification cost as a function

of the rejection cost for the 15 experiments. As in the

fixed-c case, bagging is beneficial mostly for low clas-
sification costs (the difference in the average mean

classification cost is significant to the 5% level for

0 < k06 0:35 according to the exact Wilcoxon signed
ranks test for matched samples). The improvement is

higher, which means that the outcome of bagging re-

garding learning is also beneficial, and that it does not

counteract the effect regarding sampling. The compari-

son of box sizes here and in Fig. 2 also illustrates that
the learning of c induces an additional variability of
performances which is lowered, and even almost sup-

pressed with bagging.

The mean quadratic difference between pignistic

probabilities and true posterior probabilities confirms

the benefit of bagging at this level. Bagging signifi-

cantly reduces the average error from 0.61 to 0.30.

The variability with respect to the learning sets is also
lowered (the standard deviation drops from 0.22 to

0.09).

7. Combination of beliefs: an application

We now turn to real data in order to illustrate and

study the benefits of bagging, from the point of view of

combination with external sources of beliefs. Indeed,
there does not seem to be any direct way to measure how

well a belief structure represents the available informa-
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tion (for example, pignistic probabilities do not allow
the representation of ignorance, which can be coded in a

belief structure). We thus tackle the problem by com-

bining both the bagged and non-bagged K-NN struc-

tures with the same simple rule, decide, and only then

compare the results to assess the effect of bagging at the

credal level.

7.1. The problem

Alpaydin and Kaynak [1] proposed a multistage

recognition method, which was applied to a handwritten

digit recognition problem. Their database consists of
scanned digits (0–9) represented as 32� 32 normalized
black-and-white bitmap images [14]. A group of 30

subjects contributed to the 3823 images of the training

set and another group of 13 subjects was used to gen-

erate the 1797 test images. The images were reduced

to 8� 8 gray scale bitmaps using a low-pass filter. A
standard 1-NN classifier based on a simple distance

between images then leads to 98% correct classifica-
tion. 1

With such a large training set, there is no room for

significant improvement using more sophisticated pro-

cedures such as the evidential K-NN rule. To assess the

usefulness of bagging when combining with external

sources of beliefs, the original training set was therefore

subsampled to 10 items by class, resulting in a total of

100 items (Fig. 8). The test set was left unchanged. Given
the small number of items per class, we chose K ¼ 4.

Here again, the experiments were repeated 15 times,

resulting in 15 different learning sets.

7.2. Combination with a rule

The evidence-theoretic framework allows the combi-

nation of different sources of information as long as they

are represented by belief structures. This example is in-

tended to illustrate that information stemming from

pattern recognition systems and complementary sources
of belief such as rules can easily be combined by

Dempster�s rule. The benefits of bagging at the credal
level in the pattern recognition system are then high-

lighted by the performances at the decision level of the

combined classifier.

Let X ¼ f0; . . . ; 9g be the hypothesis space and

H ¼ f0; 6; 8; 9g the set of digits whose handwritten

representation has usually at least one hole. Let R be the
simple rule:

If the bitmap image x of a digit has at least one
hole, then it is highly probable that it represents a

digit of H , y 2 H , and y 62 H otherwise.

We wish to use R as an additional source of belief

concerning the class of bitmap images. The presence of

a hole in the bitmap representation can easily be com-

puted by applying mathematical morphology operators
to the original 32� 32 binary images.
In the TBM, y 2 H translates to mðHÞ ¼ 1 and

mðHÞ ¼ 0, and y 62 H translates to mðHÞ ¼ 0 and

mðHÞ ¼ 1. However, R cannot be completely trusted, as
some digits may have both holed and non-holed repre-

sentations (e.g. some people write digit 4 like it is

typeset, with a hole). Let Phole and P
hole

be respectively

the proportion of bitmap images with and without hole.
The rule error rate E can be decomposed in two parts

E ¼ PholeEhole þ P
hole
E
hole
, where Ehole is the classification

error rate for bitmaps with a hole, and E
hole

is the error

rate for bitmaps without holes.

In this regard, Ehole and Ehole can be considered as

measures of distrust in R. For example, Ehole ¼ 0:5
means that R is completely useless in predicting digits for
bitmaps with holes (as random guess achieves the same
error rate). This should be represented by the vacuous

belief structure mRðXÞ ¼ 1. On the other hand, E
hole

¼ 0

means that R is fully reliable concerning bitmaps with-
out holes, and should then lead to the belief structure

mRðHÞ ¼ 1. Consequently, we define the belief structure

mR associated to R as shown in Table 1. Note that a

similar method for defining belief settings based on error

rates was proposed by Xu et al. [26]. The values of Ehole
and E

hole
can directly be computed with the unused

items of the training set.

The belief structure mR is a distinct source of belief: it

can therefore be combined with the belief structures

produced by the evidential K-NN rule and its bagged

version.

1 More elaborate distances are usually proposed, but this is not the

point in this paper.

Fig. 8. Example of a learning set of size N ¼ 100.

Table 1

Belief defined by R for a digit d

Case mRðHÞ mRðHÞ mRðXÞ
Hole 1–2Ehole 0 2Ehole
No hole 0 1–2E

hole
2E

hole
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7.3. Combination results

The error rates computed from unused samples in the

original training set are Ehole ¼ 5:6% and E
hole

¼ 1:7%.
Note that these low error rates should not be compared

to the ones obtained by evidential K-NN technique,

since only two subsets of classes are discriminated by the

rule. The belief structure produced by the evidential K-
NN rule is combined with mR, by use of the Dempster�s
rule of combination (Eqs. (2,3)).

Table 2 gives the mean classification error rates av-

eraged over 15 different learning sets. These are given
with and without bagging, with and without the use of

rule R. The multiplicative coefficients associated to the
horizontal arrows give the improvement rate when rule

R is taken into account. The factors corresponding to

vertical arrows are the improvement linked to the use of

bagging (all differences in mean error rates are signifi-

cant, with p-values smaller than 0.05% according to the

exact McNemar test for matched samples).

7.4. Discussion

Looking at horizontal arrows in Table 2, we see that
both the bagged and unbagged K-NN rules are im-

proved when combining with R. The reduction of the
mean error rate by a factor of 2/3 illustrates the use-

fulness of such a simple classification rule in this context.

The improvement related to bagging is shown by factors

associated to vertical arrows. Bagging also leads to sig-

nificant improvements.

The observation of vertical arrows on a single par-
ticular dataset can also be interesting, as depicted in

Table 3. In this example, the improvement due to bag-

ging before applying the rule is not significant (at the 5%

level). However, it becomes important (significant up to

the 0.2% level) when the rule is used.

As the rule is the same with and without bagging, this

can only be explained by better belief representation

before combination. The bagged method yields roughly
the same ranking of pignistic probabilities (as shown by

the similar error rates before combination), but its belief

structure is less confident and, consequently, it may be

highly improved by additional information.

This application demonstrates that the combination

of a pattern recognition technique with an external

source of belief is more profitable when uncertainty is

faithfully represented. On the one hand, when a query
example is very similar to a known prototype, the out-

put of the case-based classifier should be able to con-

tradict the imperfect rule-based classifier. Hence, digit 4

may be recognized as being a 4 with or without a hole.

On the other hand, when the query point is far from all

prototypes, the final decision process should be more

trustful in the rule classifier. Once the classifiers are

constructed, Dempster�s rule of combination entails the
weighting between more or less confident opinions. We

have presented empirical evidence that resampling and

combination techniques provide a fully automatic, yet

very efficient means to correct overconfident beliefs, thus

improving the performances of evidence-based multi-

source classification schemes.

8. Conclusion

In the framework of pattern recognition, belief

structures allow to represent uncertainty stemming from

lack of information (small sample size) or from doubtful

items of information (unvalidated data). As for proba-

bilistic classifiers, evidential classifiers predict the plau-

sibility of each outcome. Besides, their ability to provide

imprecise predictions can be used as a reliability index

by the final decision process. This feature is extremely
attractive in information fusion.

Bagging combines B belief structures given by the

evidential classifier applied to bootstrap samples. This

modification of the belief structure construction process

aims at improving uncertainty representation when the

sample size is small.

The method was tested on controlled artificial data-

sets. Classification error was shown to be significantly
reduced when rejection was allowed. The improvements

were even higher when the belief assignment parameters

were estimated, due to the stabilization of the estimation

process. The influence of bagging was also visible when

looking at pignistic probabilities, which estimate poste-

rior probabilities. Among all quantities which can be

computed and evaluated objectively in the TBM, pig-

nistic probabilities are the closest we can get to belief
structure. There is thus evidence that the belief struc-

tures provided by bagging are more relevant.

Table 2

Averaged misclassification rate (%) over 15 different training sets,

K ¼ 4

K-NN Bare with R

Original 12.9 !�0:67 8.6

# �0:88 # �0:83
Bagged 11.3 !�0:64 7.2

All differences in misclassification rates are all significant up to the

0.05% level.

Table 3

Example of misclassification rate changes (%) for one training set,

K ¼ 4

K-NN Bare with R

Original 11.3 !�0:70 8.0

# �0:95 # �0:68
Bagged 10.7 !�0:51 5.4

The improvement due to bagging before applying the rule is not sig-

nificant at the 5% level; after the rule is applied the difference is sig-

nificant up to the 0.2% level.
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Another clue supporting this conjecture was provided
by an application to handwritten character recognition,

where the pattern recognition classifier was combined

with another source of belief expressed as a rule. After

combination of the two information sources, error rates

were reduced, even when bagging had no perceptible

effect before combination. Bagging thus turns out to

be beneficial at the credal level, since the relevance of

a belief structure can be defined by its capacity to be
specified by additional trustful pieces of evidence.

Beyond the evidential K-NN, this paper illustrates the
necessity to build generic tools for inferring accurate

beliefs. It provides, up to our knowledge, one of the first

attempts to take into account the uncertainty due to the

presence or absence of an information source upon

which beliefs are constructed. In the classical pattern

recognition paradigm, in which information sources are
data points assumed to be sampled from some fixed

distribution, resample and combine techniques provide

a fully automatic means to correct undue certainty in

inferred beliefs. In our experiments, this correction was

shown to have more important outcomes for classifiers

making a more intensive use of data (with learned pa-

rameters). The improvements should thus be more ef-

fective with more sophisticated inference methods such
as the neural-network based evidential classifier de-

scribed in [8]. This should be confirmed in a further

experimental study.

Another extension of this work concerns the investi-

gation of other operators to combine the belief structures

in the bagging procedure. More general mathematical

objects such as interval-valued or fuzzy belief structures

[6,7] could even be used to keep track of the discord
within the B structures. This could further improve the
quality of belief representation at the credal level, which

was shown to be an important issue in an information

fusion context.
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